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Entry-length flow in a vertical cooled pipe 
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University of Manchester 
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A numerical solution is presented for predicting the flow and heat transfer due to 
free convection in the entry region of a cooled vertical pipe, open a t  both ends. 
Following Lighthill (1953) the Kkman-Pohlhausen method is used in this 
analysis. Velocity and temperature profiles are assumed satisfying the physical 
boundary conditions, and the integrated forms of the equations of motion and 
the equations themselves at  the axis and the walls of the pipe are used to calculate 
the various parameters involved in the profiles assumed. Two cases of constant 
wall temperature and linearly decreasing temperature with height were con- 
sidered. Cooling decelerates the fluid in the boundary layer that forms at the 
wall and the fluid in the core is accelerated by virtue of continuity. As cooling 
progresses, a t  Rayleigh number 0(103) the fluid in the boundary layer starts 
reversing at  first and then assumes progressively increasing velocities. Graphs are 
presented for the development of the predicted velocity and temperature profiles 
and the other parameters involved, for a situation when the boundary layer fills 
the whole pipe. 

1. Introduction 
In  his classic review on internal flows with body forces Ostrach (1964, chapter 4) 

writes, “Most of the early work on internal flows with body forces was of an 
experimental or semi-empirical nature.” An extensive study of the latter type 
was made by Elenbaas (1942) for the natural convection heat transfer between 
two parallel plates heated to the same temperature. None of this work however, 
gave detailed information on the velocity and temperature distributions; in 
some cases the semi-empirical formulas derived from the experimental data ! 
Schmidt (1951) demonstrated the successful application of natural convection 
flows in hollow passages in turbine blades for cooling. Ostrach (1954) calculated 
buoyancy forces on the fluid within the pipe relative to the cool fluid a t  the same 
level outside the pipe. Even in his case it seems better to regard the fluid in the 
pipe as moving under an over-all pressure gradient and the relative buoyancy 
forces within. Ostroumov (1958) presented an extensive treatment of natural 
convection in cylindrical channels. His results are in general the same as given 
by other workers on channel flows, presented rather more elegantly in terms of 
the Bessel and Neumann functions. To investigate the effect of confining walls 
on convection Lighthill (1953) analysed the flow in a closed-end cylindrical tube 
with walls at  constant temperature and the body force acting towards the closed 
end. An orifice is assumed at the open end which supplies the fluid. The type of 
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flow in the tube depends on the aspect ratio (ZIR) for given Prandtl and Rayleigh 
numbers. For small values of the ratio (Z/R) the flow is just like free convection 
about a flat plate, i.e. the effect of the confining walls is negligible if the boundary 
layer thickness is small compared with the radius of the tube. For larger aspect 
ratios this is no longer true. Lighthill used an integral method to obtain his results. 
For the similarity regime he found that the flow fills the entire tube only for one 
value of the aspect ratio (Z/R). Several authors have adapted Lighthill’s original 
idea and method of treatment of free convection in confined flows to slightly 
varied physical situations. Ostrach & Thornton ( 1958) studied the stagnation 
of fluids in closed-end tubes with a configuration similar to that of Lighthill 
except that the temperature was allowed to vary along the wall. Leslie (1959) 
found approximate solutions for the fluid flow and heat transfer in a heated 
cylinder, closed at  the bottom and opening at the top into a reservoir of cool 
fluid which has been tilted at  a small angle to the vertical. Tilting causes a small 
increase in heat transfer which is proportional t o  the square of (Z/a) tan #, where 
Z/u is the lengthlradius ratio and # is the angle of tilt. Hammitt (1958) made an 
analysis of natural convection in the open thermosyphon with internal heat 
generation. Bayley & Lock (1965) described a series of closely controlled ex- 
periments made to study the performance of closed thermosyphons. A theoretical 
analysis of the laminar boundary layer regime is given and comparisons made 
with experimental results. Martin (1967) has made predictions, supported by 
experiments, of the heat transfer due to natural convection in long externally 
cooled vertical cylinders with uniform wall temperature containing a heat- 
generating fluid in the laminar flow, having Prandtl numbers of unity or above. 
Takhar (1967) considered the entry length flow in a vertical heated (open) pipe. 
He found that at  values of the Rayleigh number O( 103) the flow in the middle of 
the pipe nearly approached stagnation. His method of analysis failed to produce 
satisfactory results before the boundary layer filled the entire pipe. 

In  the present problem an attempt is made to study the flow in the entrance 
region of a vertical pipe (open at  both ends), which is cooled with (a )  constant 
temperature at  the wall, ( b )  wall temperature decreasing linearly as a function 
of the vertical height. It is assumed that coefficients of kinematic viscosity and 
thermal conductivity are effectively constant and the Boussinesq approximation 
holds. Following Lighthill theK&rm&n-Pohlhausenmethodisusedin this analysis. 
Velocity and temperature profiles are assumed, satisfying the physical boundary 
conditions and the integrated forms of the equations of motion, and the equa- 
tions themselves at the axis and the walls of the pipe are used to calculate the 
various parameters involved in the profiles assumed. It is found that in this 
problem the boundary layer fills the entire pipe giving way to a fully developed 
flow. A reversed flow is predicted for values of the cooling Rayleigh number 
O(103). Graphs are presented for temperature and velocity profiles and other 
parameters used in these profiles for a situation when the boundary layer fills 
the whole pipe. 

In  the case of the heated pipe the flow is expected to reverse in the core region, 
whereas in the case of the cooled pipe the flow is predicted to reverse in the 
boundary layer. It may be because the K&rm&n-Pohlhausen method seems to be 
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sensitive to the core region, that the present method of analysis fails to give 
satisfactory results in the case of a heated pipe. It is hoped that the present paper 
may prove useful in a better understanding of the engineering problems on free 
convection in the entrance region of pipes. 

In  the present paper no over-simplification of the governing equations has 
been achieved by setting Prandtl number equal to infinity (as Lighthill did 
except for the extreme cases of his problem). Instead the equations have been 
solved for Prandtl number equal to unity. The velocity profile assumed is scaled 
through the parameter A ,  while the parameter D allows for the vertical displace- 
ment of velocity outside the boundary layer; the Reynolds number at entry is 
also set equal to unity. A parabolic profile is assumed for the temperature distri- 
bution in the boundary layer. Also the momentum and thermal boundary layer 
thicknesses are assumed to be equal. 

2. Theory 
The equations of motion of this problem are similar to the ordinary differen- 

tial equations of free convection except that the pressure no longer takes the 
hydrostatic value. The flow is assumed to be the boundary layer type flow, 
therefore one is justified in neglecting the gradient of a quantity along the pipe 
compared with its gradient along the radius. With these approximations the 
equations of conservation of mass, momentum and heat, in cylindrical polar 
co-ordinates, with x increasing along the pipe, reduce to 

where u, v are the axial and radial velocities, v = ,u/p and ,u the kinematic and 
dynamic viscosities, K the thermal diffusivity and /3 the coefficient of cubic 
expansion. 

The wall temperature T, may be written as 

T, = To-ATO(X). ( 5 )  

where To is the temperature of the fluid at entry. 
Variations of all the physical properties are ignored. Density changes are con- 

sidered only in so far as they give rise to the buoyancy term. Viscous dissipation 
and the work done against the gravity field are ignored. The scale temperature 
AT = (T, - To) defines a cooling Rayleigh number 

/3ga3AT 
Ra=-. 

KU 
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We make the transformations; 

r = aR, x = a x ,  u = ( K / u )  U ,  v = (K /u)  V,\ 

where the capitals denote the non-dimensional quantities and a is the radius of 
the pipe. The equations (1)-(4) reduce to 

y au aul (azu iau) u-+v- = r +  -+--- +e, 
g ax aR aR2 RaR 

o = aP/aR, 
where g is the Prandtl number. 

Using ( 5 )  the heat equation, (4) reduces t o  

-RaU- 4O(X)1 ( ;; ;;) (aag 1 as) + u-+v- = -+-- aR2 RaR ' 

Two cases arise depending upon the way the pipe wall is cooled. 
Case 1. When the wall temperature is kept constant, (11 )  reduces to 

ae ae a2e  1 ae u-+v- = -+--- ax aR aR2 RBR' 

(9) 

Case 2. When the wall temperature decreases linearly as a function of X ,  i.e. 

T, = To-ATX, (13)  
equation ( 1  1) now reduces to 

a 2 e  1 ae 
-RaU+ U-+V-  =-+-- ( :l ::) aR2 RaR' 

For a uniform flow into the pipe the boundary conditions are 

(15)  X = 0, U = U,, V = 0, 6 = Ru, all R ' c ";I 1, 

~ = i ,  u=o, v=o, e = o ,  

where U, is the non-dimensional axial velocity at  entry, which is also equal 
to the Reynolds number at entry since the Prandtl number is equal to unity 
( Uo/a = Re). 

Equations (S), (9) and ( l l ) ,  when integrated over a cross-section subject to 
the boundary conditions (15 ) ,  reduce to 

IolRUdR = +UO, 
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The equations (S), (9) and (12) themselves at  the axis and the wall of the pipe 
reduce to 

R = 0: 

R =  1: 
a w  1 au o = r+-+-- 
aR2 R aR 

Assume Kkmh-Pohlhausen type profiles for U and 8 in terms of Y = 1 - R 
and A = 1 - S, satisfying the physical boundary conditions 

1 R a  (A < Y < l), 

'= [ R a { l - ( l - g r /  (0 < Y < A). 

This corresponds to a boundary layer of non-dimensional thickness A on the wall 
of the pipe enclosing a potential core of radius S = 1 - A. Putting these values of 
U and 8 in (16)-(20) we get: 

Case 1. A[5( 6 - 4A + A') + DA( 5 - ZA)] = 30, (23) 

(24) 
a 

dA 
-[[A(14(15-14A+4A2)+DA(21-10A))]= 

-- ': a [A2(14(15-2SA+ 8A2)+4DA(21- 10A)+D2A(8-3A))l 
8 4 0 ~  &A 

Ra 
= [-i5 

Initial boundary conditions are A = 1, D = 0 at  X = 0, A = 0. Obviously 
A = 0 is a singularity for the above equations. We shall try to find out the values 
of A and Din the vicinity of the entry edge by attempting a series solution in terms 
of the boundary layer thickness. 

(26) A = [1+a,A+a,A2+a3A3+ ...I. We suppose 

This leads (after simplification) to 

A = [1+$A-icA2+ ...I, 
D = 6 [ 8 A  + ...I, 
X = J-[A'+%A3+ 30 ...I. 
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These values enable the integration of A ,  D and X in terms of A to be started 
in the vicinity of the entry edge and it was continued by the Runge-Kutta 
method on the Atlas Computer. 

Case 2. When the wall temperature decreases linearly as a function of X ,  the 
treatment is exactly similar to the one outlined in case 1. We get, on simplification 

,4[5(6-4A+A2)+DA(5-2A)]  = 30, (23) 

d 
dA 
-[[A{14(15-14A+4A2)+DA(21-10A))] = 

and (25) as given above. 

simplification), (27), (25) and 
Once again we suppose that (26) holds and proceed as before to get (after 

We thus know A ,  D and X in terms of the boundary-layer thickness A. As 
before the three reduced differential equations are solved by the Runge-Kutta 
method on our Atlas Computer. It may be interesting to note that the character- 
istic heat-transfer properties can be calculated from the present analysis as 
follows: 

Rate of heat transfer per unit 

(32) 
area of the pipe wall x pipe diameter 4 Nusselt number = - 

Characteristic temperature difference in - 
the main direction of conduction 

the heat flux at the wall = (aO/aY), = 2Ra/A; (33) 

the skin friction at  the wall is given by 

(g), = A U O T .  2 + D  
(34) 

3. Discussion 
The cooling of the wall decelerates the fluid in the boundary layer close to the 

wall and the fluid in the core is accelerated due to continuity. At values of the 
cooling Rayleigh number 0(103) the retardation of the fluid in the boundary 
layer is so great as to cause a reversal of flow in the region close to the wall. The 
core velocity would increase correspondingly. In  free convection problems the 
adverse pressure gradient is confined to the boundary layer produced by the 
buoyancy forces, whereas in the forced convection problems it takes place in 
the mainstream as well. The results predicted on the basis of the present analysis 
are more or less similar for the two modes of cooling depicted through figures 
1-5 and G-10 respectively, for a situation when the boundary layer fills the entire 
pipe. 

Figures 1 and G illustrate the velocity profiles in cases 1 and 2 at different 
Rayleigh numbers. The axial heights reached for attaining these velocities for 
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a situation when the boundary layer fills the entire pipe are shown in figures 3 
and 8, which themselves depict the development of the non-dimensional 
boundary layer thickness A with the non-dimensional axial distance X a t  
different Rayleigh numbers. Fluid in the boundary layer is decelerated due to 
cooling while the fluid in the core is accelerated. With increasing Rayleigh 
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FIGURE 1. Velocity profiles a t  different Rayleigh numbers with constant wall temperature. 

FIGURE 2. Development of the non-dimensional velocity parameter A with the non- 
dimensional axial distance X at different Rayleigh numbers with constant wall temperature. 
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FIGURE 3. Development of the non-dimensional boundary-layer thickness A with the 
non-dimensional axial distance X at different Rayleigh numbers with constant wall 
temperature. 

FIGUFLE 4. Development of shape parameter D of the velocity profile at different Rayleigh 
numbers with constant wall temperature. 
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FIGURE 5. Temperature profile for Ra = 100 at X = 0441 with constant wall tempera- 
ture. 

FIGURE 6. Velocity profiles at different Rayleigh numbers with linearly decreasing wall 
temperature. 
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FIGURE 7. Development of the non-dimensional velocity parameter A with the non- 
dimensional axial distance X at different Rayleigh numbers with linearly decreasing wall 
temperature. 
FIGURE 8. Development of the non-dimensional boundary-layer thickness A with the non- 
dimensional axial distance X at different Rayleigh numbers with linearly decreasing wall 
temperature. 
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numbers the boundary layer fills the whole pipe for gradually decreasing axial 
heights. Figures 2 and 7 illustrate the development of the non-dimensional 
velocity scaling factor A = URe-1 with the non-dimensional axial distance X 
for different Rayleigh numbers. Figures 4 and 9 show the development of the 
boundary layer thickness scaling factor D with the non-dimensional axial dis- 
tance X for different Rayleigh numbers. It is noticed that this parameter starts 
assuming negative values for Rayleigh numbers O( lo2). Figures 5 and 10 illus- 
trate the development of the temperature profile for Ra = 100 only. These two 
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FIGURE 9. Development of the shape parameter D of the velocity profile at  different 
Rayleigh numbers with linearly decreasing wall temperature. 

FIGURE 10. Temperature profile for Ra = 100 at X = 0.048 with linearly decreasing wall 
temperature. 

figures are similar except that these profiles are reached at  different axial heights 
in the two cases. Temperature profiles for other Rayleigh numbers would be 
similar in shape though not in scale for both the cases considered. 

As far as I know, experimental verification of the predictions made in this 
paper is not available yet. 

I am grateful to Mr E. J. Watson of the Department ofMathematics, University 
of Manchester, for his useful comments on the manuscript; Dr G. Poots of the 
Department of Mathematics, University of Hull, for suggesting the present 
treatment of the problem. 
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